The Model-Theoretic Expressiveness of Propositional Proof Systems

نویسندگان

  • Erich Grädel
  • Benedikt Pago
  • Wied Pakusa
چکیده

We establish new, and surprisingly tight, connections between propositional proof complexity and finite model theory. Specifically, we show that the power of several propositional proof systems, such as Horn resolution, bounded width resolution, and the polynomial calculus of bounded degree, can be characterised in a precise sense by variants of fixed-point logics that are of fundamental importance in descriptive complexity theory. Our main results are that Horn resolution has the same expressive power as least fixed-point logic, that bounded width resolution captures existential least fixed-point logic, and that the (monomial restriction of the) polynomial calculus of bounded degree solves precisely the problems definable in fixed-point logic with counting. 1998 ACM Subject Classification F.4.1. Mathematical Logic

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Faithfulness of Fat: A Proof-Theoretic Proof

It is known that there is a sound and faithful translation of the full intuitionistic propositional calculus into the atomic polymorphic system Fat, a predicative calculus with only two connectives: the conditional and the second-order universal quantifier. The faithfulness of the embedding was established quite recently via a model-theoretic argument based in Kripke structures. In this paper w...

متن کامل

Translations: generalizing relative expressiveness between logics

There is a strong demand for precise means for the comparison of logics in terms of expressiveness both from theoretical and from application areas. The aim of this paper is to propose a sufficiently general and reasonable formal criterion for expressiveness, so as to apply not only to model-theoretic logics, but also to Tarskian and proof-theoretic logics. For model-theoretic logics there is a...

متن کامل

Truth Values and Connectives in Some Non-Classical Logics

The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...

متن کامل

Characterising Combinational Timing Analyses in Intuitionistic Modal Logic

The paper presents a new logical speciication language, called Propositional Stabilisation Theory (PST), to capture the stabilisation behaviour of combinational input-output systems. PST is an intuitionistic propositional modal logic interpreted over sets of waveforms. The language is more economic than conventional speciication formalisms such as timed Boolean functions, temporal logic, or pre...

متن کامل

A Finite-Model-Theoretic View on Propositional Proof Complexity

We establish new, and surprisingly tight, connections between propositional proof complexity and finite model theory. Specifically, we show that the power of several propositional proof systems, such as Horn resolution, bounded-width resolution, and the polynomial calculus of bounded degree, can be characterised in a precise sense by variants of fixed-point logics that are of fundamental import...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017